Appl Phys Lett 2012, 101:083901.CrossRef 5. Javey A, Guo J, Wang

Appl Phys Lett 2012, 101:083901.CrossRef 5. Javey A, Guo J, Wang Q, Lundstrom M, Dai HJ: Ballistic carbon nanotube field-effect transistors. Nature 2003, 424:654–657.CrossRef 6. Liu S, Guo XF: Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Mater selleck compound 2012, 4:1–10.CrossRef 7. Tans SJ, Verschueren ARM, Dekker C: Room-temperature

transistor based on a single carbon nanotube. Nature 1998, 393:49–52.CrossRef 8. Scarselli M, Castrucci P, De Crescenzi M: Electronic and optoelectronic nano-devices based on carbon nanotubes. J Phys Condes Matter 2012, 24:313202.CrossRef 9. Kwon SH, Jeong YK, Kwon S, Kang MC, Lee HW: Dielectrophoretic Birinapant manufacturer assembly of semiconducting single-walled carbon nanotube transistor. T Nonferr Metal Soc 2011,21(Supplement 1):s126-s129.CrossRef 10. Stokes P, Khondaker SI: High quality solution processed carbon nanotube transistors assembled by dielectrophoresis. Appl Phys Lett 2010, 96:083110–083113.CrossRef GSK1210151A mouse 11. Stokes

P, Khondaker SI: Directed assembly of solution processed single-walled carbon nanotubes via dielectrophoresis: from aligned array to individual nanotube devices. J Vac Sci Technol B 2010, 28:C6B7-C6B12.CrossRef 12. Telg H, Duque JG, Staiger M, Tu X, Hennrich F, Kappes MM, Zheng M, Maultzsch J, Thomsen C, Doorn SK: Chiral index dependence of the G+ and G− Raman modes in semiconducting carbon nanotubes. ACS Nano 2011, 6:904–911.CrossRef 13. Kuzyk A: Dielectrophoresis the at the nanoscale. Electrophoresis 2011, 32:2307–2313. 14. Pham DT, Subbaraman H, Chen MY, Xu XC, Chen RT: Self-aligned carbon nanotube thin-film transistors on flexible substrates with novel source-drain contact and multilayer metal interconnection. IEEE Trans Nanotechnol 2012, 11:44–50.CrossRef 15. Mureau N, Watts PCP, Tison Y, Silva SRP: Bulk electrical properties of single-walled carbon nanotubes immobilized by dielectrophoresis: evidence of metallic or semiconductor behavior. Electrophoresis 2008, 29:2266–2271.CrossRef 16. Dresselhaus MS,

Dresselhaus G, Saito R, Jorio A: Raman spectroscopy of carbon nanotubes. Phys Rep 2005, 409:47–99.CrossRef 17. Dresselhaus MS, Jorio A, Saito R: Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. In Annual Review of Condensed Matter Physics, Vol 1. 1st edition. Edited by: Langer JS. California: Annual Review of Condensed Matter Physics; 2010:89–108. 18. Tuinstra F, Koenig JL: Raman spectrum of graphite. J Chem Phys 1970, 53:1126.CrossRef 19. Lucchese MM, Stavale F, Ferreira EHM, Vilani C, Moutinho MVO, Capaz RB, Achete CA, Jorio A: Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48:1592–1597.CrossRef 20. Pesce PBC, Araujo PT, Nikolaev P, Doorn SK, Hata K, Saito R, Dresselhaus MS, Jorio A: Calibrating the single-wall carbon nanotube resonance Raman intensity by high resolution transmission electron microscopy for a spectroscopy-based diameter distribution determination. Appl Phys Lett 2010, 96:051910.CrossRef 21.

Comments are closed.