These results argue against using single-species models of densit

These results argue against using single-species models of density dependent growth to manage predatory

species, and illustrate the importance of incorporating anti-predator behavior into models in applied population ecology. (C) 2009 Elsevier Ltd. All rights reserved.”
“Microglial activation has been implicated as one of the causative factors for neuroinflammation in various neurodegenerative diseases. The sphingolipid metabolic pathway plays an important role in inflammation, cell proliferation, selleck inhibitor survival, chemotaxis, and immunity in peripheral macrophages. In this study, we demonstrate that sphingosine kinase1 (SphK1), a key enzyme of the sphingolipid metabolic pathway, and its receptors are expressed in the mouse BV2 microglial cells and SphK1 alters the expression and production of proinflammatory cytokines and nitric oxide in microglia treated with lipopolysaccharide (LPS). LPS treatment increased the SphK1 mRNA and protein expression in microglia as revealed by the RT-PCR, Western blot and immunofluorescence. Suppression of SphK1 by its inhibitor, N, N Dimethylsphingosine (DMS), or siRNA resulted in decreased mRNA expression of TNF-alpha, IL-1 beta, and iNOS and release of TNF-alpha and nitric oxide

(NO) in LPS-activated microglia. Moreover, addition of sphingosine 1 phosphate (S1P), a breakdown product of sphingolipid metabolism, increased the expression levels of TNF-alpha, IL-1 beta and iNOS and production of TNF-alpha and NO in activated microglia. Hence

learn more to summarize, suppression of SphK1 in activated microglia inhibits the production of proinflammatory cytokines and NO and the addition of exogenous S1P to activated microglia enhances their inflammatory responses. Since the chronic proinflammatory cytokine production by microglia has been implicated in neuroinflammation, modulation of SphK1 and S1P in microglia could be looked upon as a future potential therapeutic method in the control of neuroinflammation in neurodegenerative diseases. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.”
“Ionizing radiation triggers oxidative stress, which can have a variety of subtle and profound biological effects. Here we focus on mathematical modeling of potential synergistic interactions between radiation damage to DNA and oxidative stress-induced damage to proteins involved in DNA repair/replication. When sensitive sites on these proteins are attacked by radiation-induced radicals, correct repair of dangerous DNA lesions such as double strand breaks (DSBs) can be compromised. In contrast, if oxidation of important proteins is prevented by strong antioxidant defenses, DNA repair may function more efficiently. These processes probably occur to some extent even at low doses of radiation/oxidative stress, but they are easiest to investigate at high doses, where both DNA and protein damage are extensive.

Comments are closed.